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We examine the role of a computer to prove the existence of periodic orbits of 
nonquadratic dynamical systems on the lines of the work of Vul and Sinai (l) for 
quadratic systems. We show that, in principle, the work can be successful. 
Results, simpler in the case of quadratic systems, are applied to the well studied 
Lorenz model. 
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1. I N T R O D U C T I O N  

A previous paper (2) considered the problem of the role of a computer to 
prove the existence of periodic orbits in the systems of quadratic differential 
equations, a problem already studied by Vul and Sinai. (1) 

The relevance of the study of periodic orbits of dynamical systems can 
be deduced from the works of many authors, for example Ref. 3. In this 
work we generalize the study to nonquadratic systems and, perhaps even 
more interesting, we obtain bounds that are more effective also in the case 
of quadratic systems. We recall that the problem we face is how to use 
"apr io r i "  bounds and evaluation by means of a computer to prove the 
existence of a "true" periodic orbit in some neighborhood of a numerical 
periodic orbit. We show that, with some hypotheses on the system of dif- 
ferential equations and with a convenient choice of a numerical procedure, 
the use of a computer is successful: in principle, periodic orbits can be 
"exactly" detected by a computer if the computer is sufficiently precise. 
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948 De Gregorio 

There are many numerical studies of quadratic dynamical systems./4) 
Their relevance derives, for example, from the fact that truncated Euler or 
Navier-Stokes equations are systems of quadratic ordinary differential 
equations. We note that these systems have some very interesting behavior. 
Consider the system 

2i = ~ a~klXkXt-- ~ bikxk + Ci, i = 1 ..... n 
k,l  k 

where 

b~kxixk > 0 (1) 
i,k 

for x = (xl,  x2,..., x , )  ~ 0. 
If we denote by ~ the maximun of ~,k,/a~kzXeXkXt on the unit sphere, 

by/? the minimun of (2) and by 7 the maximun of ~ c~xs, we have c~, 7 t> 0 
because they refer to odd functions, and/~ > 0 by definition. It  then follows 
that 

d 1 2 = Z ai ,x,xkx,- 2 b/kx,xk + Z c,x, 
dt 2 . ~,k,t ~,~ 

[~ 71/2J <~ ~R 3 - f i r  2 + 7R, R = x~[  

SO 

dR 
"~" ~< c~R 2 - f i r  + 7 (2) 
dt 

From (2) we have that 

dR 
- - < 0  if R 1 < R < R  2 
dt 

where 

R1,2 = 2c~ (3) 

and RI, R2 are real if f12>4a 7. 
This means that if the flow x ( t )  at some time gets into the sphere of 

radius R 2 - e ,  e > 0, it cannot escape from it any more and gets into the 
sphere of radius R1 + e. If a = 0, then dR/dt  is less than zero if R > 7/fl: the 
flow always comes into the sphere of radius R = 7/fl + e. 
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When the system is of the kind we are discussing, this a priori 
knowledge of the region of the flow (in the first case only for the flows 
starting inside the outer sphere) can be used, if useful, in what follows. 

We also note, incidently, that if 

a iki = a iil = 0 V i, k, l 

then 

div v = ~ - - =  - y b , < 0  
i ~Xi  i 

and the volume in the phase space decreases at an exponential constant 
rate 

v(t) = v(0) e x p ( -  div vt) 

and the bounded component of the attractor can evidently have only 
Lebesgue measure zero. But nevertheless it can be "strange," that is, very 
complicated. 

The work is obviously a balanced connection of analytical and 
numerical results. 

In the first part we pose the notations, recall the result of Vul and 
Sinai, and prove the main properties of the flow and of the Poincar6 map 
we need later. The rest of the paper is devoted to the analysis of errors of 
integration (of the computer and of the numerical procedure), and to the 
way of controlling them. Finally we give two applications to the Lorenz 
model. 

2. NOTATIONS AND MAIN RESULT (THEOREM 1) 

Let 

~=F(x) (4) 

be an autonomous system ordinary differential equations in R n, with 

x = (xl, x2,..., xn), F =  (f l ,  f2 ..... den) 

We suppose that F(x)  is regular, at least C 3, in the region we are interested 
in, and consider the following two cases: 

(a) F(x)  is quadratic. 

(b) The third derivatives of F(x)  are uniformly bounded in the 
region containing the flow. 
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Remark. The condition (b) is not so bad for the definition of boun- 
dedness we will give: for example a cubic term is uniformly bounded in the 
whole space (see next definition of LLFall ). 

We will see that in some cases it will be sufficient also for a rough 
bound of the third derivatives to have useful conclusions. 

Other simplifying conditions could also be considered, such as the 
Lipschitz condition on the first derivatives. 

The solutions of (4) determine a flow in R". 
We denote by S, the corresponding one parameter semigroup. So, as 

usual, the solution that for t = 0 is in x is denoted by S,x, i.e., 

Given the trajectory 

S,x  = x(t) if x(0) = x 

7 = { S~xo, 9 <<. t ~ r }  

for an arbitrary fixed T > 0 we consider also the linear system associated to 
(4) along 7, that is, the system 

= F ' ( S , x o ) z  (5) 

where F' is the matrix of derivatives afi/~xj evaluated along ~. 
Denote by 5e(s, t) the fundamental matrix solution of (5) such that 

~(s ,  s ) =  E, with E the identity matrix. Given the hypersurface F, Xd= 
const = c, we consider a trajectory that starts in a point x0 of the plane and, 
after a time T, crosses again the plane in the same direction in a point x' 
near the initial point, x' is by definition the Poincar6 map of Xo and we 
denote it by x' = P(xo). Obviously we suppose that the vector field x is not 
tangential to the plane in a neighborhood of xo, that is, f a ( x ) r  so the 
Poincar6 map is defined for every point of this neighborhood. 

Denote by ~//p(xo) the cylindrical neighborhood of Xo 

~ ~ IXi--Xoil2 <p2; [Xd--C I <p} 
ir 

by ~ ( ~ )  the p neighborhood of ~ and by {xk, k = 0 ,  1 ..... N} the 
pseudotrajectory obtained by numerical integration of (4) starting in Xo. 

Our problem is to find fixed points of the Poincar6 map [-and so a 
periodic trajectory for the flow defined by (4)]. We will see that the most 
important procedure to be successful is to separate the linear part of the 
Poincar6 map from the nonlinear part. 
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Introduced the Euclidean norm IxJA for vectors x, we note that the 
norm IIAll of a matrix is then defined by the square root of the maximum 
eigenvalue of the matrix A- A*. 

We need to estimate the following parameters: 

q(t)= sup I1~(0, r)ll, el = 

IIFll = sup IIf'(xD/I, 
k 

IIF31I = sup I(f3(x)[( 
x 

sup II~(s, t)ll 
O~s<~t<~T 

i=0 ,  1,2 (6) 

where {x~} is the pseudotrajectory and IlU(xk)lj is the norm of tensors 
obtained deriving i times the vector F, the case i =  0 corresponding to the 
vector F itself. More precisely, 

(IFll = II/~ll =sup  IF(xDI, IIFlll = sup  IIF'(xDII 
k k 

and [{Fi(x)(I, i =  2, 3, are defined by 

~ F~(Xk) Xi Yj 

where 

F,+(x,,,) = L ~x, % . . . . . .  

and 

IIF2(x~)ll IXl I YI 

x =  ( x ,  ..... x . )  ..... 

where 

We need also 

Z Fij r(x) Xi  YJZr ~ IIF~(x)ll IXl I YI IZI 
t,d,r 

F , .  l- 03f,(x) a3f"(x) 7 
ex  x,. 

e3= inf jfu(x)[ 
x E ~ p l ( X o )  

r 7 1/2 

sup / 
x~ldpl(xO) Ligd I 

= sup tFa(x)f 
x 
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and 

c5= sup IIF'(x)ll 
x ~ q / p t ( x 0 )  

where Fa denotes the vector Fa = ( f  l ..... f a -  1, )ca+ 1,..., f , ) .  It is convenient 
to use IFat instead of If] only if I/al >> If,  I, i C d .  Pl  has to satisfy the con- 
dition: 2clPo(1 + c 4 / c 3 ) + e < ~ p l  with the value of Po given in Theorem 2 
and e defined in Theorem 1 (see the end of the proof of Lemma 3). 

The previous hypothesis (b) means that I[F311 is bounded. We now 
recall, for completeness, the fundamental theorem given in Ref. 1. Let the 
Poincar6 map P be defined in the neighborhood qlo(Xo)c~ F and suppose 
that x ' =  P ( x o )  is still in q/p(Xo)c~ F. Develop the Poincar6 map around xo 
for x e qlp(Xo) ~ F in the following way: 

P ( x )  = x '  + L ( x  - xo)  + Q(x ,  Xo) 

so L is a linear matrix and Q(x ,  Xo) contains the nonlinear terms of the 
map. Then we have the following: 

T h e o r e m  1 (Ref. 1). Suppose (i) there exist constants Po and K0 
such that 

[Q(x,  Xo) - Q ( y ,  Xo)l <~ Kop  Ix - Yl (7) 

for every P <~ Po and IX-Xo[ <~ p, l y - x ~  <~ p. 

(ii) For e = Ix' - Xol and for some f5 <~ Po let the following inequality 
be satisfied: 

I ] ( L - E )  11h +Ko,6 ~<1 (8) 

then in a ~ neighborhood of xo there exists a unique fixed point of the 
Poincar6 map. 

We give here, for completeness, a short proof. If x* is a fixed point of 
P, it is 

from which 

x* = x' + L (x*  - Xo) + Q(x*,  Xo) 

x *  - x o =  - - ( L - -  E ) - I [ x '  - x o +  Q ( x * ,  Xo)] 

So it is natural to check if the inductive sequence 

x n - x o = - ( L  - E ) -  1 [ x '  - Xo + Q ( x "  - 1, Xo)] 
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will converge to x*. First of all, if x " - l e  ~//~(x0)c~ F1 also x,  stays in the 
same neighborhood 

Ixn-xol  ~< I I (L-E) -a l l  (e+Kofi2)<<.fi 

Furthermore the sequence is contractive 

[x ~+1 - x " l  ~< ] l (Z-  E)-a]l I(Q(x', Xo) -  O(x "-~, Xo))l 

~< t l ( t - E ) - a ] l  Kofi Ix"-x~-11 < [xn--xn-l[ 

and so there exists a unique fixed point. 

Remark. Even if I1(L-E) 111 and Ko are relatively large, the con- 
dition (8) of the Theorem can be satisfied if ~ is small enough. Denoting by 
s the numerical image of x0 on F, in the relation 

~= I x ' - x o l  ~< Ix ' - s  + I~-x01 

the first term on the right contains only errors of the integration procedure 
and round off errors, and can be reduced conveniently using a higher order 
of integration and a more precise computer, or using multiple or infinite 
precision programs. The second term on the contrary tells us how near we 
are numerically to a fixed point of the Poincar6 map: if Xo is a true fixed 
point also this term can be made conveniently small. So, if the system has 
periodic orbits, we can find them by means of the Newton method, 
applicable even if the orbit is not attractive, and can, in principle at least, if 
]l (L - E) - ~ l[ is not very big or infinite, satisfy the condition (8) of the 
theorem. What remains is the condition (7), but we are able to prove the 
following theorem. 

T h e o r e m  2. Condition (7) of Theorem 1 is satisfied with 

K0---(1 + c ~ )  Ty(T) cl(T) e p~ 

where Po is such that 

fl = e~po(l[F21[ + 2 i1F311 clpo) <~ 1/2T 

and 
y(t) = 2c2e~t(lfF2lj + 3e~t HF3H ClPO) 

The exact value of Ko is at the end of Remark (3) of Lemma 2. 

Remark. We are not saying that we can certainly find all periodic 
orbits by computer: II (L - E ) -  all and K o can be very big and, despite of the 

822/38/5-6-10 
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fact that the Newton method is applicable also to nonattractive orbits, we 
have to start near them to have convergence. In any case, a lot of work is 
necessary. 

3. PROPERTIES OF THE FLOW 

We start with some useful lemmas. We suppose that lIF3tl is bounded 
(if instead the system is quadratic, in all what follows [IF31[ has to be con- 
sidered zero). 

k o m m a  1. If I x -xo l  ~< p where p is such that 

fl = c~p(llF2][ + ~ IIF3I[ c~p)  <<. 1 / 2 T  (9) 

then 

(i) 

and 

(ii) 

I x ( t ) -  Xo(t)[ < eBtel( t)  I x -  Xo[ for t ~< T 

Ix(t) - Xo(t) - ~ (0 ,  t)(x - Xo)l 

lp3 o2fltf[ ~<>1~ -,[[F2ll +�89 IIF3[I c l p ) I x - x o l  2 

R e m a r k .  We see that, if p is small, it is not necessary to have a 
narrow bound for [IF31I to satisfy (9). In our applications we find for p 
values of the order of 10 -6 , 10 -7 . 

Proo f .  (i) Expanding F ( x ( t ) )  we have 

Yc(t) - YCo(t ) = F ' ( x o ( t ) ) [ x ( t )  - Xo(t)] + � 8 9  - Xo(t)] ~ 

+ ~ F ' ( ~ ( t ) ) [ x ( t ) - x o ( t ) ]  3 (10) 

where the points ~(t) depend on the components. The notation has been 
simplified; for example F " x  2 stays for 

\ ~  Oxj Ox, xjx, ,  Lj,, ~oxj ox, xjxt,..., ~j.~ xjxl 

The solution of (10) satisfies the integral equation 

fo x(t) - Xo(t) = ~ (o ,  t ) ( x -  Xo) + 1 ~ ( s ,  t) F"(x(s))[x(s) - Xo(S)] 2 ds 

fo + ~ ~( s ,  t) f ' (~ ( s ) ) [ x ( s ) -Xo (S ) ]  3 ds (11) 
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from which have 

[x( t ) -  Xo(t)[ <~ cl(t) I x -  x0[ +�89 liE21[ [x(s)-  xo(s)12 ds 

fo + lc  1 HE3[[ [x(s)-xo(s)[3ds (12) 

Consider the differential equation 

~(t) = ~i(t)  z (0)  + �89 Itg211 z 2 

+ ~cl [rF3[j z 3, z(t) = Ix(t) - Xo(t)l (13) 

If z(t) < ez(0) for t ~< T, where e > 1 is to be specified later, it is 

2(0 < O1(t) z(0) + [�89 [IrZll ~z(0) + k ]]F3IJ ~2Z2(0)] Z 

SO 

where 

If 

or  

it follows that 

z(t)<<.cdt)z(O) e bt 

b = �89 ~z(0)[-ptF 2 Pt + �89 IlF3lj c~z(0)] 

bT<~�89 

elc~z(O)[llF211 + ~rlF~ll ~z(O)]T~ l (14) 

z(t)<~el/Zcl(T)z(O) for t<~T 

so the procedure is consistent if ~>>.el/%1(T ), for example, c~=2cl. The 
condition (14) is always satisfied for z (0)=  ]X-Xol ~ p  if 

2cZp(IjFZlj + ~lfF311 clp)T ~ 1 (15) 

so (i) follows with the given value of/L 
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(ii) From (11) it comes 

Ix(t) -- Xo(t) - L#(0, t ) ( x  -- Xo)l 

lCl I[F21l If IX(S) -- XO(S)I2 as "~ lc  1 llg31l If IX(S)- Xo(S)I 3 aS 

~1 3 IX 2 1~4 ~cl IlF2ll e2#tt -Xol q-go 1 IIF3]I e3~tt IX-Xol 3 

<<. �89 + lel3t Ilf3ll Clp)  Ix - Xol 2 

The interesting fact is that relations like those of Lemma 1 are valid also 
for any two points in a p neighborhood of Xo. | 

L e m m a  2. If Ix~-xol  ~<P and Ix2-xol ~ p  with p satisfying (15), 
then, for t ~< T 

(i) Ix2(t ) -xl( t ) [  <~eO~(t) tCl( t ) Ix2-xl l  (16) 

and 

(ii) I x 2 ( t ) - - X l ( t ) - - ~ ( O ,  t ) ( x 2 - - X l ) l  <~kp Ix2-xxl  

where 7(0 is the monotone increasing function 

V(t) = 2c~eat(llF2ll + 3e~' IIF3LI c l p )  

and 

(17) 

k = T y ( T )  ePTr(T)cl(T) 

P r o o L  (i) We have 

:t2(t)- ~l(t) 

= F ' ( x l ( t ) ) [ x 2 ( t )  - xl( t)]  + �89162 - xl( t)]  2 

= r ' ( x o ( t ) ) [ X z ( t )  - xl ( t ) ]  + F " ( X o ( t ) ) [ x l ( t )  - Xo(t)] [Xz(t) - xl( t )]  

+ � 8 9 1 6 2  - Xo( t ) ]Z[x2( t )  - xl( t)]  

+ �89 ) _ xl( t)]  2 + � 89  -- Xo( t ) ] (x2  - Xl) 2 

(18) 

with the same observation about the points ~(t) as before. For later use we 
simply denote H(x~( t ) ,  Xz(t)) the nonlinear terms on the right side of (18), 
so 

;o x 2 ( t ) - X l ( t ) = S f l ( O ,  t ) ( X z - X l ) +  ~ ( s ,  t) H ( x l ( s ) , x 2 ( s ) ) d s  (19) 
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From (18) it follows that 

Ix2(t)-x,(t)l 

<~cl(t) f x 2 - x l l  +c~ liE211 e~tp Ix2(s)-xl(s)[ ds 

1 3 e23tp2 ;0 + ~cl ] IF3[I  ]x2(s)-xl(s)] ds 

+ 1ca IIF211 ix2(s)_xl(s) f2ds 1 2 +=Cl [IF311 e~'P IXa(S)- Xl(S)[2 ds 

<~ cl(t) I x2 -  xll + 2ea'c2p(NF2[I + 3ePt IIF3]I clp ) Ix2(s)-  xl(s)l ds 

= Cl ( t ) ]x2 -x l l  +y(t)p Ix2(s)-xl(s)] ds 

and, proceeding as usual, we have 

Ix=(t) - xdt)[  ~< Cl(t) e pe~t)' [x2 - xll (20) 

If 

jIF3lt c,p4~ IjF2I/ (21) 

for example, IIF311 clp <~ ~o IIF211, (20) gives 

I X 2 ( t )  - -  xt(t)l ~< Cl(V) e 2 [x2 - -  x t l  ~< 8 c l ( T )  Ix2 - -  x t l  

(ii) Subtracting the linear part and applying (20) it follows that 

Ixdt) - x,(t) - ~ (0 ,  t)(x2 - xl)l 

fo <~ 2e&c~p(llfzll -t-�88 & jIF31t clp) Ix2(s)-  x~(s)l ds 

<-G ?(t) pcl(t) ePr(')'t Ix2 - xl] 

<~kp Ix2 -x l [  (22) 

Remarks. (1) Proceeding more carefully the factor 2 in 7(0 could 
be substituted by 3 if p is small. 

(2) With I[F31[ = 0  [or the condition (21)] it is 

py( T) T <~ 2 
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and so 

p7(t) te p~(~ <~ 2" e 2 < 2" 8 

We did not use these fixed bounds because p can be much less than the 
value given by equality in (15), and so the bounds (16) and (17) are better. 
In our applications p is in fact small and we needed these finer results. 

(3) The bound (22) controls the nonlinear terms of the flow. It is 
easy to understand that, apart from some corrections which we will con- 
sider in the next section, of which the principal one is a factor (t + c4/c3), 
(22) is also the principal part of the nonlinear terms of the Poincar6 map: 
that is, Ko of Theorem 2 is nearly equal to K(1 + c4/c3) if T is the time of 
the Poincar6 map. 

(4) It is to be stressed that the inequality (22) is really quadratic for 
its dependence on p and I x2 -x l [ .  

As a consequence, while [Xz( t ) -x l ( t ) l  is in fact expanding (at least 
the function that gives the superior bound is expanding), on the contrary 
[ x 2 ( t ) - x l ( t ) -  s t ) ( x 2 -  xl)l, in virtue of its intrinsic quadratic charac- 
ter, taking p much smaller than the value given in (15) so that Kp is less 
than 1, can become a contraction with respect to Ix2-x~[:  the distance of 
the points, subtracted the linear part, is less than its initial value. The main 
criterion says essencially that, strengthening enough this contraction 
character on the nonlinear part of the Poincar6 map so that k/5 is not only 
less than 1, but satisfies the condition (8), then the Poincar6 map has a uni- 
que fixed point. 

Corollary. If xl and x2 are in a p neighborhood of ~ and x0(t*) is 
one of the points of 7 at a distance less than p from xl and x2, then 

Istx2-- StXll <~ e~ t* + t)IX2--Xll 

Proof. 

with 

c l ( t* , t*+t)=  sup II~(t*,t*+~)[I 
O~<~<~t 

It follows from the autonomous character of the system. ] 

4. POINCARI~ M A P  

First of all we give two simple properties of the Poincar6 map: the 
uniform continuities of the map. 
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L e m m a  3. If xl and x2 are two points in the p neighborhood of Xo 
and x'l = P(Xl), x;  = P(x2) are the corresponding Poincar6 maps obtained 
from the flow after a time T1 and T2, respectively, then, supposing T2 > T1 

and 

ePY( T1) TI 
(i) z I T = T z - T I < .  Cl(T1) ]x2-xl l  (23) C3 

ProoL 

(ii) Ix'2- x'~l = IP(x2)-  P(xl)] 

<~ep~(T~)~icl(T1)( 1 +C4~c3/]x2-xll (24) 

From Lemma 1, applied to [xi(T)-xo(T)] where T is the 
time of the Poincar6 map of Xo, we have 

Ixi(T) - xo(T)l ~< e#rcl(T) ]xi-- Xol (25) 

and, while xo(T) is on the plane xa= x by definition, (25) gives a bound for 
the distance of xi(T) from that plane. In any case, the points xi(T) are in 
the qgZpcl(r) neighborhood of xo(T). In this neighborhood the m i n i m u m  
value of the velocity orthogonal to the plane is c3 and so 

ATi= ITs-  TI ~ e  #Tcl"T) ( Ixi-xot  (26) 
C3 

Obviously if p is small, also AT is small, for, example, of the order of 
numerical integration step. The maximum value of the distance of x~(Ti) 
from x~(T) projected on the plane x d = c is obviously 

c4 ATi~  e/~Tca(T) ]x i -  Xol e4 
C3 

and so finally 

IP(xg)- P(xo)[ = [x(T~)- xo(T)[ ~< e~rc~(T)]x~-Xo] (1 -~C4~ 
\ c3/ 

<~ 2c l p 1 + -~3 

Now, applying Lemma 2 in the same way and noting that in any case the 
points xi(t) are in a ~pl(XO) neighborhood of xo,/91 = P*  + e, for t from T 
to Ti, as a consequence of (16) we obtain the results. 
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Remark. Continuing Remark (3) of Lemma 2 and considering the 
result (24), we expect that, if we remove the linear part of the Poincar6 
map, the inequality we will obtain is 

I P ( x 2 ) - P ( X l ) - L ( x 2 - x l ) [ < ~ k p l x 2 - x l l  1 + ~  (27) 

in analogy to (16), (17), apart from some minor corrections due to the fact 
that now the time of the flow of the Poincar6 map depends on the point. 
We consider (27) well established by previous considerations and only for 
completeness do we add a more formal derivation of it; obviously, the 
reader who is not interested in the details can skip the rest of this Remark. 

In fact, in what follows we also obtain an expression for the matrix L, 
the linear part of the Poincar6 map in Xo. 

If Ti is the time of the Poincar6 map of X~ (suppose T2 > Ta), we have 

e(x2) - e(x~) = x2( r2) - x~( T~) 

= x~(7"~) - x 2 ( T ~ )  + x ~ ( r , )  - x~(7" , )  

= r(x2({))( T2-- T1) + 5f(O, T1)(x2- xl) 

+ ~(s, rl) g(x~(s), x~(s)) as (28) 

By definition [x2(T2) - xl(T1)]a = 0, so 

T 2 -  T I -  1 I5s T~)(x2-xl) 
f~(x2(i~)) 

+ f f '  s T~) H(xl(s), x2(s)) ds]a 

and, substituting in (28) we have 

[e(x2) - e(x~)L 

= ~ [~k(o, rl) L(x2d3)  
fd(x2(ia)) 

~dk( O, T1)] (Xl -- x2) k 

-t- ~1 ~ [~,.k(s , T1)-- ~(x2(t-i)) ~.CPak(S , Tt)] H(x~(s), x2(s))k ds 
fa(x2({a)) 

From this expression it follows easily (taking X1 = Xo and X~ =~ Xo) that 

f,-(Xo(r)) Lik = ~LP~k(O, T) ~ak(O, T), i ~ d (28') 
f a( xo( T) ) 
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We then have 

[P(x2) -  P(xl)-- L(x2 - x~)]; 

= Y~ I-~k(0, T1) - ~ ( 0 ,  T) ]  (x2 - x~)k 
k 

f~(x2(t-~)) ] r r)(x~-x~)~ Y, + 
"T [fa(xo(T)) fa(x2(fa))J 

+ ~ f , ( x ~ ( ~ . ) )  
2 _ , ~  [~%(0, T)-~CPdk(0 , T~)](x2--xI) k 
k f,t(X2({a)) 

oo f ~ ( x ~ ( i ~ ) )  

From this, recalling Lemma 2, (ii), and the previous bounds (26) and (26'), 
we obtain 

IP(x2) - P(x~) - L ( x2 -  xl)[ 

<~ c I c 5 A T 1 e cS~JT1 IX 2 - -  Xl[  

+ c~ e~r ~3 P (1 +c4']2]x2--Xllc3/ 

+ c~ c4 c5 AT1 e cS~r~ Ix2 - x l l  
C3 

+ 1 +~3 (T+AT~)e~'~T~p fx2-x~l 

( ~33)[ ( ZITI' c3T ~ 2 eC"~T1 ~< 1+ K(T) l+- -~- - )e  s ~+ePclC~c3 

+e~Tc~C-'~5( +~3)] p 'x2--x" 

SO 
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and Theorem 2 of the Introduction is proved, because, as we already noted, 
the principal part in Ko is 

Ko~- 1 + ~  K ( T ) =  1+  c4 c I ( T )  T y ( T ) e  ~ 
c3/ 

5. ERRORS OF I N T E G R A T I O N .  THE P S E U D O F L O W  

In each step of integration we introduce an error that is d.ue to two 
different causes. ,', 

First of all there is the error due to the numerical method of 
integration, and then the round-off error of the computer. While the first 
can be reduced With a procedure of integration more precise, the second is 
an intrinsic limit of the machine (at least if one does not use multiple or 
infinite precision programs). 

We assume knowledge of the region in which the solution is contained 
either by virtue of considerations like those of the Introduction or by some 
numerical method. This is just to suppose that the round-off error can be 
uniformly bounded. Call ~c the error in one step of integration. It can be 
evaluated considering the number of elementary operations needed for one 
step of integration, c% can also be determined as a result of interval analysis 
applied to a single step of integration. 

With regard to the numerical integration error ~i, we note that, using 
for example Taylor expansion of order n, the error is bounded by 

1 
~ i ~ < - - (  sup IIFill)n+"A n+l (29) 

n +  1 i~<n+l 

with tlUI[ having the meaning of paragraph 1. 
It is understood that, using again the knowledge of the region of the 

motion, we can reduce this error as we like choosing small A and high n, 
for example until i t  is smaller than the computer error. We observe that 
also now we do not need a careful knowledge of the region of the motion. 
We denote with e the sum of the two errors, e = ei + ec. 

R e m a r k .  We are supposing that the derivatives of F greater than 3 
have bounds not greater than []F311. The result (29) can be improved, if 
some of the IIUll is much bigger than the others, taking the right power of 
it in the rest of Taylor. 

Let now {x~} be the pseudotrajectory obtained by numerical 
integration. If R~ is the operator of numerical integration, that, is the 
operator that had to give xk+l in terms of xk, we really have 

IXk + 1 -- R,~Xkl <~ C~c 
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for the round-off error of the computer. So 

xk + 1 = RA xk + ~k 

where [~k] ~<c%. 
Consider also the operator Rt with 0 ~< t ~< A, Ro = E, obtained by sub- 

stituting in the numerical integration operator the step of integration A 
with the continuous parameter t, and define 

2 k ( t ) = R t X k + t ~ k ,  O<~t<.A, k = 0 ,  1,..., N -  1 
z] 

so that 2k(A) = R~ xk + ~k = Xk + 1" That means that we are considering the 
pseudoflow, that is, the continuous curve connecting xk with xk+l which, 
in our case, is the analog of connecting xk and xk +1 by means of segments 
in the case of linear approximation. 

Let ~(t) be this pseudoflow, for which then 

2( t )=~k( t ' )  with k = [ A  ] a n d t ' = t - k A  

[ ] denoting the integer part. 
We observe first that we can estimate 

IIF'II= sup [ f ' (X( t ) ) l=sup  sup [f'(Yck(t))l 
O<~t<~T k O < ~ t ~ A  

along the pseudoflow by 

F'(Yk(t)) = F'(kk) + F"(x~)[X~(t) - xk] 
l /tt -- 9 + 5F (~k)[xk(t)-- xk]- 

[recall that we need F"(~k) only if F"(x) is not constant or well bounded]  
and then 

IrPII IIF'IP + IJF2II �9 sup Is 
k,O ~ t <~ A 

+IjIF311 sup r~ ( t ) -x~J  2 
k , O < ~ t < . A  

Bounds for f~k( t ) -  xkJ are easily obtained. For A conveniently small we 
can have for example 

sup sup I~k(t)-x~l~<211FHA 
k O ~ t < ~ A  

We are now ready to give a bound to the distance of the pseudoflow from 
the flow. 
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and 

defining 

then 

P r o p o s i t i o n  1. If ( N +  1)e~ 1 ~ <<. p, where p is such that  

2 3 2c2 p(llF211 + x l lF  II c ~ p ) T  <. 1 

~l( t )  = sup I1~%~ Z)I I 
O<~s<~v<~t 

lYe(t) - x ( t ) l  <<. ep~(r)r(k + 1 ) C~l(t)~ 

with 

k =  ~<N 

and 
2(t)  = 2k(t), 0 ~< z ~< A 

Proof .  By definition of ~ we have, for every k, 

For  z = A (30) means 

Ix~+ t -  s~xkl ~ 

The corollary of Lemma  2 is now applicable: 

[SjA + ~Xk_ j -  SjA + ~(SAXk j _  ~)1 ~< ep~(r)rc~t(kA + z)o~ 

Then by 
k - - 1  

G(~)-sk~+,Xo= Y. [sj~+~xk_j-sj~+~(s~x~_s_~)] 
oj 

+ (~k(~)  - s ~ x k )  

it follows 

(15) 

(30) 

(31) 

[2(t) -- x(t)[ = [xk(z) -- sk~ + ~Xo[ 

k - - 1  

oj 

~< (k q- 1) C-~l(t)o~ x e p~(r)r 
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A control of the procedure can be obtained with the interval analysis 
applied to the whole orbit, but the final error of the interval analysis can be 
bigger of this bound for the propagated error. 

Remark. Knowing that the flow is contained in some bounded 
region, we can estimate uniformly the error due to truncation of Taylor 
expansion and to the computer. Then, from Proposition 1 it follows that 
the flow x(t) is contained in the ~ neighborhood of the pseudoflow s 
with 

= (N+  1) e P T ( T ) T c I o t  

We can then evaluate again I[F3[[, the unique norm depending not only on 
the pseudotrajectory, in this smaller region, obtaining hopefully a narrower 
bound for it to use in the previous expressions. 

6. A CRITICAL CONSTANT 

We come now to the evaluation of the most important constant of the 
criterion, the constant C1 (Note that Ko depends on C~ and C1 appears in 
all bounds of the Lemmas). 

Introduce the matrices: 

~( i ,  i) = E ,  

l - 1  

z)= IF] 
O k 

1--1 

~(i ,  l )=  l-[ 
? 

[ E +  AF'(x~)], 

[E + zl/~'(xk) ], 

i = 0 , 1  ..... N 

i=  1,..., N 

i < l , / =  1,..., N 

and, for P a fixed integer, 

L P - -  1 

c~(I, L) = 1-I EL'+ AF'(xk)] 
I p  k 

Define 

C~(T) = sup 115~(0, l)r[, C1 = sup t1~(I, L)Pl (32) 
l I,L 

Our aim is to use the matrices 5~(i, l) and the value C~ to bound the norms 
of the fi~ndamental matrix solution 5~ t) of the linear equation 

= F'(xo(t))A 
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along the flow Xo(t ) satisfying the condition 

5f(s, s) = E 

We have to stress that there are many causes of errors and precisely: 

(i) ~ ( i ,  k +  1) is not exactly given in terms of ~ ( i ,  k), but the 
round-off errors of the computer are introduced. 

(ii) ~a(i, l) is not evaluated for every i and I when i r  0 [see (32)]. 

(iii) ~(i,l) is not the fundamental matrix solution along the 
pseudotrajectory. 

(iv) ~ ( i ,  l) is evaluated in fact along the pseudotrajectory and not 
along the trajectory. 

Nevertheless, we try to bound the norms of &~ t) in terms of the 
norms of ~ ( I ,  L). First of all consider the computer's error. 

(i) The matrices we found by means of the computer are not 

~ ( i ,  l) = l-[~k- 1 [ E +  AF'(xk)] but the matrices ~ ( i ,  l) such that 

5r l )=  [E+AF'(x~)] ~(i, l -  1) + 6i,~ 

The errors considered here are those the computer adds once the 
pseudotrajectory {x~} is given. Later we will consider the problem of the 
pseudotrajectory as a cource of error. 

If we assume that/~ is a uniform bound for 6~,t in the case under con- 
sideration, 116/,~lq ~</~, we can easily compute how the error propagates. We 
have 

l --1 l--1 l--1 

~ ( i , / ) =  ]-I [E+AF'(Xk)] + ~ I-I [E+AF'(x~)] 6~,j 
i k i + l J j +  1 k 

and then, denoted by ~1 the sup of the norm of ~ ( i ,  l), 

and 

l - -1  

II~(i, l)ll ~ ll~(i, l)ll +/3 ~ l i b ( J +  1, l)11 
i+  lJ 

<~ I1~(i, I)11 + (l-i)fl sup IL~(i, l)[I 
i < ~ j ~ l  

C1 = sup [l~(i, l)11 ~ sup nl~(i, l)[I + Nfl sup II~(i,/)11 
i,l i,l j , l  

<~ ~ + N ~  
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If Nil < 1 it follows 

C1 <~ _ _ C 1  (33) 
1 - N i l  

In our case, for the elementary error given in paragraph 6, and for the 
orbits considered, il is certainly smaller than 10 -8, so this correction is not 
very significant. 

We now go on to the second point. 

(ii) It is easily understood that, knowing 

C1 = sup IfZa(/, L)It 
LL 

the corresponding value with the sup done over every i and l is given by 

~* = sup II~(i,/)[I ~< C l '  cIIF'IIAP 
i,l 

= C1 ' c~ w i t h  A: = A P  

R o m a r k .  This is, in a sense, the most critical correction, meaning 
that knowing a first check of J[UIJ, we have to choose A; so that [JF'I] A1 is, 
for example, not greater than �89 this value already giving a correction to the 
Point (ii) of more than the 50%. But the number of operations needed to 
evaluate C'1 grows quadratically when A1 is reduced. All other corrections 
depend linearly on A. 

We come then to consider the error due to the approximation we used 
of the fundamental matrix solution along the pseudotrajectory. Further- 
more we pass from discrete to continuous values of time. 

(iii) Introduce the matrices ~ ( s ,  t), fundamental matrix solution of 
the linear equation 

[~ = F ' ( 2 ( t ) ) B  

with the condition ~(s ,  s) = E and define 

C: = sup II~(i3,/A)JI 
i,l 



968 De Gregorio 

We have 

C1 ~ sup [1~(i, l)ll + sup 1[~(i, t) - 2 ( i A ,  l~)ll 
i ,I  i , l  

l - - 1  

<~5*+sup  ~ ~ ( i , r )  
i , l  i r 

x [ ( E +  AF'(x , ) ) -  C2(rA, (r+ 1)A)] x ~ ( ( r  + 1)A, IA) 

<~ 5* + NC,A 2 ]lUll = C, = 5* + C*TA IIF'II = C~ 

Finally, if 

5*TA IIF'II= < 1 

(34) 

(35) 

(34) gives a useful inequality 

Ct ~< 
5 "  

1 - a S ,  r IIF'II ~ 

In (34) we used the condition A IIF'IJ ~< I contained in (35). When the con- 
dition (35) is not satisfied, or the value is for example greater than 1, we 
can improve the procedure without changing A, defining the matrix s176 l) 
in the following way: 

l - - 1  

~( i ,  l) = I-I { E +  AF'(xk) + IA2[F'2(x~) + F"(xk) F(xk)] } 
i k 

This gives another factor A in the left member of (35) which now becomes 
5*TAZ(IIF'II3+ LIFJl IIF'II jlF211 + IlF2ll " IIF3LI) To go from discrete to con- 
tinuous values of time it is sufficient to multiply for the factor e llr'lLa so that 

sup II~(s, t)ll = C* ~< C,e  Irp'Tla 
O < ~ s < ~ t < ~  T 

(ll F' II on the pseudoflow) 

We come now to the final correction. We have to bound I)so(s, t))l, 
where 5o(s, t) is the fundamental matrix solution of the linear variational 
equation along the flow xo(t), in terms of ]L~q~(s, t)]j with 5?(s, t) the same 
matrix along the pseudoflow 0?(t). 

(iv) From the definition of 5 ~ and 8 ,  and their properties, the 
following integral relation can be deduced: 

f; 5O(s, t)= C2(s, t)+ c2(z, t){F"(2(z))[Y~(z)- Xo(Z)] 

+ ~-F'(~(~))E~(~)- Xo(~)] 2 } 5o(s, ~) d~ 
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which gives 

[ l~ ( s ,  t)ll ~< l l 2 ( s ,  t)l[ + C1" PIF211 [Jz(~)-Xo(~)[  �9 115e(s, ~)11 dr 

+ �89 liE311 I~(~)-Xo(~)l  2 II~(s, ~)11 dr 

Using now Proposition 1, with ~o denoting the coefficient of r 

co = ( N +  1) eP~'(r)ro~ 

we have 

(gl(t) ~< C~ + C~ IIF211 ~o ~2(z) dr + �89 Ilf3ll co 2 ~g3(m) d'r 

where IIF211 refers to the pseudoflow and is evaluated like IIPII. 

R e m a r k .  C1 is contained also in co, but for p small the result does 
not depend on that. In any case also this condition has to be checked at the 
end. Proceeding as in Paragraph 2 for the equation 

we have 

~(t )  = ~z 2 + f lz  3 

~< [c~ + flTz(0)] z 2 if z ( t )  <<. 7z(0) = yC* 

C* 
(btgl(l) < 1 -- [~ "4- fl~Z(0)] Cl~t 

with the consistency condition 

(C.2 ][p2][ (0+1(7.3 ilF3[i 092.2)T=6 ~<�89 

so that 

"~ 1 - 5  < 2 C *  

Come finally to the evaluation of Cx(T). We need it to have a bound 
of L through the formula (28'). We see that we have to consider only the 
points (iii) and (iv) because (i) is negligible and (ii) does no t  occur because 
the supremum was done over all i 

C~(T) = sup II&(0, i)ll 
i 

822/38/5-6-11 
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The correction (iii) is the same, but depends on the previous knowledge of 
C1. It is 

~ l ( r )  ~ < Ca(T) 
1--ACITIIF'II  2 

Similarly, from the procedure in (iv), it follows that 

Cl(r) 
e l ( T )  < ~ - -  

1 - 6  

7. A P P L I C A T I O N S  

We applied the previous results to two different versions of the Lorenz 
model. With the bounds in [2] ,  especially with the corrections for C1 used 
there, we could not conclude, as we do now, that the numerical closed 
orbits we studied satisfy the condition of the criterion. 

First of all consider the system studied by Vul and Sinai ~1) 

2 = a l X  + bl yZ + blXZ 

f ; = a 2 y - b l  y z - b l x z  

,-2 = --a3z + (x + y)(bzx + b3 y ) 

which by a linear transformation reduces to the Lorenz system (see below). 
With 

al = 9.700378782, 

a 2 = -16.700378782, 

a 3 = 2.666666667, 

bl = -0.227266206 

b2 = 2.616729797 

b 3 = -1.783396463 

the values of the parameters of the corresponding Lorenz equations are 

r = 28, 6 = 6, b = 8/3 

The fixed point found by Vul and Sinai 

(3.5007872047249; 3.3303317970426; 27) 

is not stable, but the Newton method converges the same rapidly. We 
obtain a value for [ 2 - x o l  of the order of 10 -14. The intersection with the 
plane z = 27 was found reducing recursively by a factor 2 the step of 
integration until the desired precision was reached. The computer used is 
the Univac 1100 of the University of Rome. The elementary error of it, in 
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double precision, is less than 3 • 10 -18. We can assume that the computer 
error in one step of integration is not greater than 10-14 (interval analysis 
gives a value less than 10-15). We used the Taylor expansion scheme to 
integrate the system, and could change easily the order of the expansion 
with a recursive routine. The step of integration used was A = 10 -5 and 
PA =zl  1 = 5 x  10 3 so all previous critical conditions are satisfied, con- 
sidering also that the value for p we obtain is p = 0.7 x 10 -s. We observe 
that we do not need a careful knowledge of the constants: only e and the 
corrections to cl deserve attention. The larger contribution to e is due to 
[XN--x(NA)I ,  and it can be made smaller by increasing A and, correspon- 
dingly, the order of Taylor: for example, with A = 10 - 3 ,  the number of 
steps of integration decreases by a factor 10 2 but the number of elementary 
operations in one step of integration does not grow by the same factor 
passing from 4 to 7 terms in the Taylor expansion. The corrections to C, 
on the contrary, depend critically on A and A1, and we cannot easily satisfy 
the condition to have both small. We already noted that the evaluation of 
C1 depends quadratically on T/A1. 

The parameters for the orbit of Vul and Sinai are 

c1~<7, [tUJ[ ~<45, IIF2[I ~< 6, c3 ~>49,  c4~<16 

c5~<27 , T =  0.68992, I[(Z- E)[[ -111 ~<20, K0< 3 x 10 3 

so it is easily seen that the condition (8) of the criterion is satisfied with e = 
1.5 x 10-7,/5 = 0.7 x 10 -5. The bound of precision needed for the computer 
is 

<~ NeP~(r)rcl ~ 0.3 x 10-12 

a value well within the limits of our computer. The other closed orbit 
studied is that found by Franceschini and Tebaldi in the Lorenz system (4) 

2 = --sx  + sy 

= - y  - ( s  + z ) x  

~ =  - B z  + x y -  R 

for the following values of the parameters: s = 10, B = 8/3, R = 294.13333. 
The coordinates of the fixed point are 

( -- 9.3249753511062; 7.70489278613672; - 11 ) 

In this case the values of C1 and of IIF'lf are large and we had to use, for 
example, the definition of ~ given in (iii) of Section 6 and A1 = 2  • 10 -3. 
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The final value of the parameters, considering also Remark 1 of Lemma 2, 
is 

cl < 89, HE'll 464 ,  IIF211 < ~ ,  c3>~ 336, c4172 

c5<21,  T =  1.09751, [ t (L-  E)-l l l  < 1, 2, K 0 < - ~ •  i0  6 

The condition of the criterion is satisfied with e = 0.9 x 10 7, t~ = -~ • 1 0 - 7 .  

The precision needed for the computer is ~ < 0.9 • 10 -~4 and we can say 
that, even if to the limit, the precision we have is the right one (recall 
anyway that also in this case the interval analysis gives an error of 10-15). 

The final conclusion is that in both systems there exists only one 
periodic orbit in the t~ neighborhood of the numerical periodic orbit. 
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